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EFFECT OF PERIODIC OSCILIATIONS OF VELOCITY AND DENSITY
OF A MEDIUM ON DISINTEGRATION OF LIQUID JETS*
By I. F. Dityakin and V. I. Yagodkin

In a number of problems connected with the disintegration of liquid
jets into drops (the atomization of liquids, the obtaining of emulsions,
the transition of laminar flow of a liquid to turbulent, and so forth),
considerable interest is attached to the study of the effect of the
fluctuations of the flow velocity, that arise as a consequence of vari-
ous causes, on the stabllity of the flows under consideration. It is
of interest also to estimate theoretically the effect of density
fluctuations of the gaseous medium surrounding the liquid jet on the
disintegration of the Jjet. These fluctuations occur, for example, in
the combustion chambers of liquid fuel jet engines and may change the
conditions of the work process.

A theoretical investigation is presented of the effect of velocity
and density fluctuations of the medium surrounding a cylindrical liquid
jet on the disintegration of the jet. For the solution the method of
small disturbances is applied.

It is shown that: (1) with fluctuations of the flow velocity of
the liquid and of the density of the medium there is a change in the
character and in the wave length of the unstable perturbations and in-
stead of a single region (characteristic in the absence of fluctuations),
an infinite number of separate unstable disturbances arise, (2) the
optimum wave length is less than that for the case of absence of
fluctuations, that is, the fluctuatlions of the flow velocity and of the
density of the medium lead to a decrease in the droplet dimensions ob-
tained in the jet disintegration, and (3) the obtained results of the
theoretical analysis are qualitatively confirmed by the availlable ex-
perimental data.

We shall consider the stability of a circular cylindrical liquid
jet. We choose a system of coordinates in which the jet is stationary
while the surrounding medium moves with velocity U. The jet density

*”Vliyanie periodicheskikh kolebanii skorosti i plotnosti sredy
na raspad zhidkikh struy." Akad. Nauk SSS8R, Otdel. Tekh. Nauk, no. 4,
1957, pp. 115-120.



and the density of the surrounding medium are denoted by pj; and po,
respectively. It is assumed that the velocity U and the density oo
are periodic functions of the time. The fluids are assumed to be ideal
and to possess potential flows.

1. The equation of the velocity potentia’ in a cylindrical system
of coordinates (r,p,z) is

0% 9,99 o (1.1)

2% 190 1 3% o
arz T or I‘2 acpz asz

As is known (refs. 1 and 2) the following boundary conditions are
satisfied on the surface of the liquid jet:

(a) The normal velocities are equal (for r = a):

dt D b, 3t 9%
S U-55 A (1.2)

where ¢ 1is the radial perturbation of the jot surface and the sub-
scripts 1 and 2 refer to the jet and the medium, respectively.

(b) The difference of the pressures in tie jet and medium 1s equal
to the pressure of the surface tension

2 2
oo = opfL L O7E 37
PP =t a’ * ag dp? * dz2 (2.3)

where T 1is the surface tension coefficient, and p; and Do the

pressures for the perturbed motion, determinedl by the lagrange-Cauchy
integral

B 3%, B 3¢, ody
P1 = -P1 5% Po = -Po St + o U (1.4)

Solving equation (1.1) for the jet and tie medium by the method of
separation of variables we obtain

imp+ikz imp+1kz

¢ = A(t)I (kr)e B ¢ = B(:)Ky(kr)e (1.5)
where A(t) and B(t) are functions of time, ¢ = 2x/A the wave number,
A the length of the perturbation wave, propazated along the z-axis,
m the number of waves over the circumference of the jet cross-section,
and I, and K; Bessel functions of imaginary argument of order m.
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The radial perturbation of the surface from the initial position
of the undisturbed jet may be presented in the form

—elm$+1kz

£ =2¢ (1.6)

Substituting expressions (1.4), (1.5) and (1.6) in the boundary
conditions (1.2) and (1.3) we obtain

€ o= A(t)T (xa), €'+ 1kUE = B(t)K} (ka)

- p1A (8)T(ka) + poB' (£)K,(ka) + Po1kUB (1)K (ka)

= —% T(k%a® + m® - 1) (1.7)

where
I (ka) = g% I, (kr), K (ka) = é% Km(kr) for r ==&

Eliminating from this system the functions A and B and intro-
ducing the nondimensional magnitudes

e lfpa
M=—3—, a = ka, L=U -—%—, T =1 T3 (1.8)

we obtain the equation for €(1)

(MK - I) + 2iaMIKE' - [a®MIZK + afaf + m2 - 1) - 4aML'K]E = 0

(1.9)
where
In{) K o () (1.10)
TLE CTRE |
and ' and Kﬁ are derivatives of the Bessel functions with respect
to «.

We reduce equation (1.9) to the normal form

u" + Ju=20



where

u(t) = E(7) exp{% /% dr} (J = -g - %(%)2 - %(%)) (1.11)

J 1is the invariant of the differential equation, while

£ =M - I, g = 2iaMIK
R (1.12)
h = -[a?MLPK + afaf + m2 - 1)] + iaML'K

Thus

u(t) = €(1) exp 1aK'/ﬁM—L——E at

J = —l—E[CLZMLZKI - al(c? + m? - 1)(MK - I) + ioKIM'I] (1.13)
(M - I)
We shall consider separately the effect of the fluctuations of the
velocity and density of the medium on the stability of the liquid jet
with respect to small perturbations.

2. let us consider the effect of the osc:llations of the flow
velocity (i.e., of the parameter L), on the disintegration of the jet,
assuming the density of the medium to be constant (M = constant).

-

We present the nondimensional velocity 1. in the form

3
L =ILy[1 + ey(vr)] (v = c)vp%: ) (2.1)

where V 1is a periodic function of period 2:, € the relative ampli-
tude of the velocity oscillations of the medinm, which we assume small
in comparison with unity, v the nondimensional frequency of the super-
posed oscillations, and w the circular fregiency. We then obtain
from equation (1.13)

u(t) = t(r) exp{—w—i{q—_‘tvlK—_.L f L d'c}

(2.2)
J = zﬁ[azmxmg - a(@? + mf - 1)(MK - I) + 2aPMKILZey (vT)]

Putting vT = X Wwe reduce equation (1.9) to the form

u" + A+ W {x)lu=0 (2.3)
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M= LUY%

2 2
1 2 2 20“MKIL €
= O MKILG - alo? + m? - V)(K - I)|, ¥=——"5
vE(MK - 1)2[ ( J : vE(MK - T)2
(2.4)

Equation (2.3) is a Hill equation. The general solution for this
equation (ref. 3) has the form

u = CreM¥p(x) + Cze’uxm(—x) (2.5)

where @(x) is a periodic function, p a characteristic exponent de-
pending on the parameters A and 7y and determining the character of
the solution. The solutions of interest to us (increasing with time)
correspond to Re[p]>0.

let us first consider the very simple impulsive oscillations of
the form

1 (-x £ x < 0)
v(x) = (2.6)
-1 (0 <x<n)

In this case, the solution of equation (2.3) is expressed in terms
of trigonometric functions, while the exponent u 1is computed by the
formula (ref. &)

h 2mp = 1T T2 i (2.7)
ch 2mp = cos xjcos Xp - 3 §E + o Jsin x3sin xp .
where
Xy = t+/A+ 7

With the aid of thils equation it is possible to construct the
boundary curves between the regions of stable and unstable solutlons
corresponding to ch 2nxp = + 1. In figure 1 these curves have been con-
structed in the coordinates A and y and the reglons are shown cor-
responding to the stable solutions (hatched areas).

The parameters A and y of the Hill equation depend, in this
case, on both the magnitudes M, Ly, m, v, € and on the wave number o.
Eliminating the magnitude « from equations (2.4) we construct the
curve A(y) for the chosen values of the preceding parameters (fig. 1).



The curve A(Yy) starts from the origin and successively intersects
all regions of instability. With increasing distance from the origin
all increasing values of the wave numbers « correspond to points of
the curve. )

In order to investigate the effect of tie veloclty oscillations of
the medium (or of the outflow velocity of th: liquid) it 1s necessary
to construct the curves of dependence of the increment of the oscilla-
tions of the perturbed motions on the wave number of the regions of un-
stable (increasing) oscillations.

Since with an accuracy up to a periodic factor
o~ u~ ePX = ghVX (2.8)

the increment of the oscillations will be egial to
Z = (2.9)

In figure 2 the curves Z(a) are constructed for two oscillation
frequencies v (0.6 and 2) for values of the parameters M = 10'3,
m=0, L, = 40, and € = 0.4. The curve Z({«) is also constructed for
the case of absence of velocity oscillations (€ = 0).

As we see, this curve for € = 0 possesses a maximum at o =~ 1.3.
In accordance with the Raleigh hypothesis (rofs. 1 and 2) the wave
length of the most unstable disturbance is determined by the drop
- diameter.

In superimposing veloclity oscillations +he character of the dis-
Integration of the Jjet changes as follows: &« large (1n principle in-
finitely large) number of regions of instabi ity in the coordinates
A and 7y appears. BEach of these regions hus a definite range of wave
numbers (wave lengths) and a value of the ma::lmum increment of
oscillations Z.

If we assume that the dimension of the drops (formed as a result
of the disintegration of the jet) is determined by the wave length cor-
responding to the maximum value of the increrient over all regions of
instability, then the dimensions of the drops decrease in the case of
oscillations of the flow velocity (fig. 2).

Experimental data are available on the effect of the flow velocity
oscillations on the liquid jet (ref. 6). It was found that these
oscillations lead to a decrease in the drop dimensions; the mean diam-
eter of the drops under the conditions of the experiment decreased
approximately by one-half.
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These experiments therefore qualitatively confirm the preceding
theoretically derived conclusion.

Within the limits of the chosen magnitudes of the parameters the
change of frequency of the oscillations v causes a redistribution of
the regions of instability with respect to the wave numbers (wave
lengths); at the same time the magnitude of the maximum increment of
the oscillations practically does not change.

3. We now proceed to investigate the effect of the density fluc-
tuations of the medium (the magnitude M) on the disintegration of the
Jjet, assuming the flow velocity to be constant (I, = constant).

We shall here assume that the magnitude M is a harmonic function
of the time

M= My(1l + & cos vT) (3.1)
where & 1is the amplitude.

From equations (1.12) and (1.13) we obtain expressions for the
invariant of the differential equation (vT = 2x)

J(x) = 8y - 29qcos 2x - 2if,sin 2x (3.2)
where

~ 4
o=
vE(MK - I)

) z[azMoLZKI - a(c? + m2 - 1)(MK - I)]

o 2MgKwd 2y 2, 2 -
6 = - I)SE;L I(1 - 2:) + (of + 1) (24, - 1] (3.3)
2aM_KTLS
9y = - — 2
2 v(MK - 1)°

Equation (1.9) then assumes the form of a Hill equation

u" + (8g - 26qcos 2x - 216p8in 2x)u = O (3.4)

This solution can likewise be presented In the form of equation
(2.3).



Comparing these curves we see that for “he same values of the
paraneters M and L, irequencles and ampli-.udes, the curves charac-
terizing the density osclillations of the med um is more steep. As is
shown ty computations, the curves | = constent ipn each region of din-
stability of the diagram (fip. 3) are such tlat with increasing distance
Irom the origsin on the a-axils, the masmitude: of the exponent p  in-
crease. This meuns that for the same conditions the values of the in-
crements Z  in the case of density oscillations of the medium will in
absolute value he less than the values for tie case of the flow velocity
oscillations.

It follows that the density osclillations of the medium surrounding
the ligquid Jet have less efPect on the disintegration of the Jet than
e oscillations of the flow velocity. If tte curve Z(w), similar to
he curve In llgure 2, 1s constructed for this case the same efTect of
tie density oscillations can be qualitatively established as that which
holds for the velocity oscillations.

The preceding conclusions derived on the effect of the density
oscillations of the medium are confirmed by the experiments published
in relerence 7.
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